Source code for glue.utils.geometry

import numpy as np

from glue.utils import unbroadcast, broadcast_to

__all__ = ['points_inside_poly', 'polygon_line_intersections', 'floodfill', 'rotation_matrix_2d']

[docs]def rotation_matrix_2d(alpha): """ Return rotation matrix for angle alpha around origin. Parameters ---------- alpha : float Rotation angle in radian, increasing for anticlockwise rotation. """ if np.asarray(alpha).ndim > 0: # In principle this works on an array as well; would have to return matrix.T then raise ValueError("Only scalar input for angle accepted") return np.array([[np.cos(alpha), -np.sin(alpha)], [np.sin(alpha), np.cos(alpha)]])
[docs]def points_inside_poly(x, y, vx, vy): """ Test if coordinates ``x``, ``y`` fall inside polygon of vertices ``vx``, ``vy``. Parameters ---------- x, y : `~numpy.ndarray` Coordinates of the points to test vx, vy : `~numpy.ndarray` The vertices of the polygon Returns ------- contains : `~numpy.ndarray` of bool Array indicating whether each coordinate pair is inside the polygon. """ if x.dtype.kind == 'M' and vx.dtype.kind == 'M': vx = vx.astype(x.dtype).astype(float) x = x.astype(float) if y.dtype.kind == 'M' and vy.dtype.kind == 'M': vy = vy.astype(y.dtype).astype(float) y = y.astype(float) original_shape = x.shape x = unbroadcast(x) y = unbroadcast(y) x = x.astype(float) y = y.astype(float) x, y = np.broadcast_arrays(x, y) reduced_shape = x.shape x = x.flat y = y.flat from matplotlib.path import Path p = Path(np.column_stack((vx, vy))) keep = ((x >= np.min(vx)) & (x <= np.max(vx)) & (y >= np.min(vy)) & (y <= np.max(vy))) inside = np.zeros(len(x), bool) x = x[keep] y = y[keep] coords = np.column_stack((x, y)) inside[keep] = p.contains_points(coords).astype(bool) good = np.isfinite(x) & np.isfinite(y) inside[keep][~good] = False inside = inside.reshape(reduced_shape) inside = broadcast_to(inside, original_shape) return inside
[docs]def polygon_line_intersections(px, py, xval=None, yval=None): """ Find all the segments of intersection between a polygon and an infinite horizontal/vertical line. The polygon is assumed to be closed. Due to numerical precision, the behavior at the edges of polygons is not always predictable, i.e. a point on the edge of a polygon may be considered inside or outside the polygon. Parameters ---------- px, py : `~numpy.ndarray` The vertices of the polygon xval : float, optional The x coordinate of the line (for vertical lines). This should only be specified if yval is not specified. yval : float, optional The y coordinate of the line (for horizontal lines). This should only be specified if xval is not specified. Returns ------- segments : list A list of segments given as tuples of coordinates along the line. """ if xval is not None and yval is not None: raise ValueError("Only one of xval or yval should be specified") elif xval is None and yval is None: raise ValueError("xval or yval should be specified") if yval is not None: return polygon_line_intersections(py, px, xval=yval) px = np.asarray(px, dtype=float) py = np.asarray(py, dtype=float) # Make sure that the polygon is closed if px[0] != px[-1] or py[0] != py[-1]: px = np.hstack([px, px[0]]) py = np.hstack([py, py[0]]) # For convenience x1, x2 = px[:-1], px[1:] y1, y2 = py[:-1], py[1:] # Vertices that intersect keep1 = (px == xval) points1 = py[keep1] # Segments (excluding vertices) that intersect keep2 = ((x1 < xval) & (x2 > xval)) | ((x2 < xval) & (x1 > xval)) points2 = (y1 + (y2 - y1) * (xval - x1) / (x2 - x1))[keep2] # Make unique and sort points = np.array(np.sort(np.unique(np.hstack([points1, points2])))) # Because of various corner cases, we don't actually know which pairs of # points are inside the polygon, so we check this using the mid-points ymid = 0.5 * (points[:-1] + points[1:]) xmid = np.repeat(xval, len(ymid)) keep = points_inside_poly(xmid, ymid, px, py) segments = list(zip(points[:-1][keep], points[1:][keep])) return segments
[docs]def floodfill(data, start_coords, threshold): from scipy.ndimage.measurements import label # Determine value at the starting coordinates value = data[start_coords] # Determine all pixels that match mask = (data > value * (2 - threshold)) & (data < value * threshold) # Determine all individual chunks labels, num_features = label(mask) mask = labels == labels[start_coords] return mask