from collections import OrderedDict
import abc
import uuid
import warnings
from contextlib import contextmanager
import numpy as np
import pandas as pd
from fast_histogram import histogram1d, histogram2d
from glue.core.message import (DataUpdateMessage, DataRemoveComponentMessage,
DataAddComponentMessage, NumericalDataChangedMessage,
SubsetCreateMessage, ComponentsChangedMessage,
ComponentReplacedMessage, DataReorderComponentMessage,
ExternallyDerivableComponentsChangedMessage,
PixelAlignedDataChangedMessage)
from glue.core.decorators import clear_cache
from glue.core.util import split_component_view
from glue.core.hub import Hub
from glue.core.subset import Subset, SubsetState, SliceSubsetState
from glue.core.component_id import ComponentIDList
from glue.core.component_link import ComponentLink, CoordinateComponentLink
from glue.core.exceptions import IncompatibleAttribute
from glue.core.visual import VisualAttributes
from glue.core.contracts import contract
from glue.core.joins import get_mask_with_key_joins
from glue.config import settings, data_translator, subset_state_translator
from glue.utils import (compute_statistic, unbroadcast, iterate_chunks,
datetime64_to_mpl, categorical_ndarray,
format_choices, random_views_for_dask_array)
from glue.core.coordinate_helpers import axis_label
# Note: leave all the following imports for component and component_id since
# they are here for backward-compatibility (the code used to live in this
# file)
from glue.core.component import Component, CoordinateComponent, DerivedComponent
from glue.core.component_id import ComponentID, ComponentIDDict, PixelComponentID
try:
import dask.array as da
DASK_INSTALLED = True
except ImportError:
DASK_INSTALLED = False
__all__ = ['Data', 'BaseCartesianData', 'BaseData']
[docs]class BaseData(object, metaclass=abc.ABCMeta):
"""
Base class for any glue data object which indicates which methods should be
provided at a minimum.
For now, subclasses of BaseData are not guaranteed to work in glue, and you
should instead subclass BaseCartesianData.
"""
def __init__(self):
# Metadata
self.meta = OrderedDict()
# Subsets of the data
self._subsets = []
# Hub that the data is attached to
self.hub = None
self.style = VisualAttributes(parent=self)
[docs] @property
def label(self):
"""
The name of the dataset
"""
raise NotImplementedError()
[docs] @abc.abstractmethod
def get_kind(self, cid):
"""
Get the kind of data for a given component.
Parameters
----------
cid : :class:`~glue.core.component_id.ComponentID`
The component ID to get the data kind for
Returns
-------
kind : {'numerical', 'categorical', 'datetime'}
The kind of data for the given component ID.
"""
raise NotImplementedError()
[docs] @abc.abstractproperty
def main_components(self):
raise NotImplementedError()
[docs] @property
def components(self):
"""
A list of :class:`~glue.core.component_id.ComponentID` giving all
available components in the data
"""
return self.pixel_component_ids + self.world_component_ids + self.main_components
[docs] @property
def coordinate_components(self):
"""
A list of :class:`~glue.core.component_id.ComponentID` giving all
coordinate components in the data
"""
return self.pixel_component_ids + self.world_component_ids
[docs] @property
def pixel_component_ids(self):
"""
A list of :class:`~glue.core.component_id.ComponentID` giving all
pixel coordinate components in the data
"""
if not hasattr(self, '_pixel_component_ids'):
self._pixel_component_ids = []
for i in range(self.ndim):
pid = PixelComponentID(i, 'Pixel Axis {0}'.format(i), parent=self)
self._pixel_component_ids.append(pid)
return self._pixel_component_ids
[docs] @property
def world_component_ids(self):
"""
A list of :class:`~glue.core.component_id.ComponentID` giving all
world coordinate components in the data
"""
return []
[docs] @property
def derived_components(self):
return []
[docs] def find_component_id(self, label):
"""
Find a component ID by name.
This returns the associated ComponentID if label is found and unique,
and `None` otherwise.
"""
# This is a simple implementation that relies on .components and should
# not need to be overriden
if isinstance(label, ComponentID):
return label
matches = [cid for cid in self.components if cid.label == label]
if len(matches) == 1:
return matches[0]
elif len(matches) > 1:
return None
[docs] @contract(hub=Hub)
def register_to_hub(self, hub):
""" Connect to a hub.
This method usually doesn't have to be called directly, as
DataCollections manage the registration of data objects
"""
if not isinstance(hub, Hub):
raise TypeError("input is not a Hub object: %s" % type(hub))
self.hub = hub
[docs] @property
def data(self):
return self
[docs] @contract(subset='isinstance(Subset)|None',
color='color|None',
label='string|None',
returns=Subset)
def new_subset(self, subset=None, **kwargs):
"""
Create a new subset, and attach to self.
Parameters
----------
subset : :class:`~glue.core.subset.Subset` or :class:`~glue.core.subset.SubsetState`, optional
Reference subset or subset state. If provided, the new subset
will copy the logic of this subset.
Returns
-------
The new subset object
Notes
-----
The preferred way for creating subsets is via
:meth:`~glue.core.data_collection.DataCollection.new_subset_group`.
Manually-instantiated subsets will **not** be represented properly by the UI.
"""
nsub = len(self.subsets)
kwargs.setdefault("color", settings.SUBSET_COLORS[nsub % len(settings.SUBSET_COLORS)])
kwargs.setdefault("label", "%s.%i" % (self.label, nsub + 1))
new_subset = Subset(self, **kwargs)
if subset is not None:
new_subset.subset_state = subset.subset_state.copy()
self.add_subset(new_subset)
return new_subset
[docs] @contract(subset='inst($Subset, $SubsetState)')
def add_subset(self, subset, label=None):
"""Assign a pre-existing subset to this data object.
Parameters
----------
subset : :class:`~glue.core.subset.Subset` or :class:`~glue.core.subset.SubsetState`
The subset to be assigned. If this is a `~glue.core.subset.SubsetState`,
it will be wrapped in a new Subset automatically
Notes
-----
The preferred way for creating subsets is via
:meth:`~glue.core.data_collection.DataCollection.new_subset_group`.
Manually-instantiated subsets will **not** be represented properly by the UI.
"""
if subset in self.subsets:
return # prevents infinite recursion
if isinstance(subset, SubsetState):
# auto-wrap state in subset
state = subset
subset = Subset(None)
subset.subset_state = state
if label:
subset.label = label
self._subsets.append(subset)
if subset.data is not self:
subset.do_broadcast(False)
subset.data = self
subset.label = subset.label # hacky. disambiguates name if needed
if self.hub is not None:
msg = SubsetCreateMessage(subset)
self.hub.broadcast(msg)
subset.do_broadcast(True)
[docs] @contract(attribute='string')
def broadcast(self, attribute):
"""
Send a :class:`~glue.core.message.DataUpdateMessage` to the hub
Parameters
----------
attribute : str
Name of an attribute that has changed (or None).
"""
if not self.hub:
return
msg = DataUpdateMessage(self, attribute=attribute)
self.hub.broadcast(msg)
[docs] @property
def subsets(self):
"""
Tuple of subsets attached to this dataset.
"""
return tuple(self._subsets)
[docs] def get_object(self, cls=None, **kwargs):
"""
Get the dataset represented as a non-glue object, using the translation
infrastructure.
Parameters
----------
cls : `type`, optional
The class to use for representing the data object. If a non-glue
data object was added to the glue data collection, it should
automatically be returned using the same class as it was provided
in, and this argument shouldn't be needed.
"""
if cls is None:
if hasattr(self, '_preferred_translation'):
cls = self._preferred_translation
else:
raise ValueError('Specify the object class to use with cls= - supported '
'classes are:' + format_choices(data_translator.supported_classes))
handler, _ = data_translator.get_handler_for(cls)
return handler.to_object(self, **kwargs)
@property
def _subset_labels(self):
return [subset.label for subset in self.subsets]
[docs] def get_subset_object(self, subset_id=None, cls=None, **kwargs):
"""
Get a subset represented as a non-glue object, using the translation
infrastructure.
Parameters
----------
subset_id : `str` or `int`, optional
The name or index of the subset to retrieve.
cls : `type`, optional
The class to use for representing the data object. If a non-glue
data object was added to the data collection, the subset should
automatically be returned using the same class as it was provided
in, and this argument shouldn't be needed.
"""
if cls is None:
if hasattr(self, '_preferred_translation'):
cls = self._preferred_translation
else:
raise ValueError('Specify the object class to use with cls= - supported '
'classes are:' + format_choices(data_translator.supported_classes))
if len(self.subsets) == 0:
raise ValueError("Dataset does not contain any subsets")
elif subset_id is None:
if len(self.subsets) == 1:
subset = self.subsets[0]
else:
raise ValueError("Several subsets are present, specify which one to retrieve with subset_id= - valid options are:" + format_choices(self._subset_labels, index=True))
elif isinstance(subset_id, str):
matches = [subset for subset in self.subsets if subset.label == subset_id]
if len(matches) == 0:
raise ValueError("No subset found with the label '{0}'".format(subset_id))
elif len(matches) > 1:
raise ValueError("Several subsets were found with the label '{0}', use a numerical index instead".format(subset_id))
else:
subset = matches[0]
else:
subset = self.subsets[subset_id]
handler, _ = data_translator.get_handler_for(cls)
return handler.to_object(subset, **kwargs)
[docs] def get_selection_definition(self, subset_id=None, format=None, **kwargs):
"""
Get subset state represented as a non-glue object, using the
translation infrastructure.
Parameters
----------
subset_id : `str` or `int`, optional
The name or index of the subset to retrieve.
format : `str`, optional
The format to translate the subset state to.
"""
if len(self.subsets) == 0:
raise ValueError("Dataset does not contain any subsets")
elif subset_id is None:
if len(self.subsets) == 1:
subset = self.subsets[0]
else:
raise ValueError("Several subsets are present, specify which one to retrieve with subset_id= - valid options are:" + format_choices(self._subset_labels, index=True))
elif isinstance(subset_id, str):
matches = [subset for subset in self.subsets if subset.label == subset_id]
if len(matches) == 0:
raise ValueError("No subset found with the label '{0}'".format(subset_id))
elif len(matches) > 1:
raise ValueError("Several subsets were found with the label '{0}', use a numerical index instead".format(subset_id))
else:
subset = matches[0]
else:
subset = self.subsets[subset_id]
handler = subset_state_translator.get_handler_for(format)
return handler.to_object(subset, **kwargs)
[docs]class BaseCartesianData(BaseData, metaclass=abc.ABCMeta):
"""
Base class for any glue data object which indicates which methods should be
provided at a minimum.
The underlying data can be any kind of data (structured or unstructured) but
it needs to expose an interface that looks like a regular n-dimensional
cartesian dataset. This means exposing e.g. ``shape`` and ``ndim``, and
means that get_data can expect ndarray slices. Non-regular datasets should
therefore have the concept of 'virtual' pixel coordinates and should
typically match the highest resolution a user might want to access the data
at.
"""
def __init__(self, coords=None):
super(BaseCartesianData, self).__init__()
self._coords = coords
self._externally_derivable_components = OrderedDict()
self._pixel_aligned_data = OrderedDict()
[docs] @property
def coords(self):
"""
The coordinates object for the data.
"""
return self._coords
[docs] @abc.abstractproperty
def shape(self):
"""
The n-dimensional shape of the dataset, as a tuple.
"""
raise NotImplementedError()
[docs] @property
def ndim(self):
"""
The number of dimensions of the data, as an integer.
"""
return len(self.shape)
[docs] @property
def size(self):
"""
The size of the data (the product of the shape dimensions), as an integer.
"""
return np.prod(self.shape)
[docs] def get_data(self, cid, view=None):
"""
Get the data values for a given component
Parameters
----------
cid : :class:`~glue.core.component_id.ComponentID`
The component ID to get the data for.
view : `slice`
The 'view' on the data - anything that is considered a valid
Numpy slice/index.
"""
if cid in self.pixel_component_ids:
shape = tuple(-1 if i == cid.axis else 1 for i in range(self.ndim))
pix = np.arange(self.shape[cid.axis], dtype=float).reshape(shape)
if view is None:
return np.broadcast_to(pix, self.shape)
else:
return np.broadcast_to(pix, self.shape)[view]
elif cid in self.world_component_ids:
comp = self._world_components[cid]
elif cid in self._externally_derivable_components:
comp = self._externally_derivable_components[cid]
else:
raise IncompatibleAttribute(cid)
# Note that above we have extracted Component objects from internal
# properties - we don't actually expose Component objects in this class,
# only in the Data class, but we use these components internally for
# convenience.
if view is None:
return comp.data
else:
return comp[view]
[docs] @abc.abstractmethod
def get_mask(self, subset_state, view=None):
"""
Get a boolean mask for a given subset state.
Parameters
----------
subset_state : :class:`~glue.core.subset.SubsetState`
The subset state to use to compute the mask
view : `slice`
The 'view' on the mask - anything that is considered a valid
Numpy slice/index.
"""
raise NotImplementedError()
[docs] @abc.abstractmethod
def compute_statistic(self, statistic, cid, subset_state=None, axis=None,
finite=True, positive=False, percentile=None, view=None,
random_subset=None):
"""
Compute a statistic for the data.
Parameters
----------
statistic : {'minimum', 'maximum', 'mean', 'median', 'sum', 'percentile'}
The statistic to compute
cid : :class:`~glue.core.component_id.ComponentID` or `str`
The component ID to compute the statistic on - if given as a string
this will be assumed to be for the component belonging to the dataset
(not external links).
subset_state : :class:`~glue.core.subset.SubsetState`, optional
If specified, the statistic will only include the values that are in
the subset specified by this subset state.
axis : `int` or `tuple` of `int`, optional
If specified, the axis/axes to compute the statistic over.
finite : `bool`, optional
Whether to include only finite values in the statistic. This should
be `True` to ignore NaN/Inf values
positive : `bool`, optional
Whether to include only (strictly) positive values in the statistic.
This is used for example when computing statistics of data shown in
log space.
percentile : `float`, optional
If ``statistic`` is ``'percentile'``, the ``percentile`` argument
should be given and specify the percentile to calculate in the
range [0:100]
random_subset : `int`, optional
If specified, this should be an integer giving the number of values
to use for the statistic. This can only be used if ``axis`` is `None`
"""
raise NotImplementedError()
[docs] @abc.abstractmethod
def compute_histogram(self, cids, weights=None, range=None, bins=None, log=None, subset_state=None):
"""
Compute an n-dimensional histogram with regularly spaced bins.
Parameters
----------
cids : `list` of `str` or :class:`~glue.core.component_id.ComponentID`
Component IDs to compute the histogram over.
weights : `str` or :class:`~glue.core.component_id.ComponentID`
Component IDs to use for the histogram weights.
range : `list` of `tuple`
The ``(min, max)`` of the histogram range.
bins : `list` of `int`
The number of bins.
log : `list` of `bool`
Whether to compute the histogram in log space.
subset_state : :class:`~glue.core.subset.SubsetState`, optional
If specified, the histogram will only take into account values in
the subset state.
"""
raise NotImplementedError()
[docs] def compute_fixed_resolution_buffer(self, bounds, target_data=None, target_cid=None,
subset_state=None, broadcast=True):
"""
Get a fixed-resolution buffer.
Parameters
----------
bounds : `list`
The list of bounds for the fixed resolution buffer. This list should
have as many items as there are dimensions in ``target_data``. Each
item should either be a scalar value, or a tuple of ``(min, max, nsteps)``.
target_data : :class:`~glue.core.data.Data`, optional
The data in whose frame of reference the bounds are defined. Defaults
to ``data``.
target_cid : :class:`~glue.core.component_id.ComponentID`, optional
If specified, gives the component ID giving the component to use for the
data values. Alternatively, use ``subset_state`` to get a subset mask.
subset_state : :class:`~glue.core.subset.SubsetState`, optional
If specified, gives the subset state for which to compute a mask.
Alternatively, use ``target_cid`` if you want to get data values.
broadcast : `bool`, optional
If `True`, then if a dimension in ``target_data`` for which ``bounds``
is not a scalar does not affect any of the dimensions in ``data``,
then the final array will be effectively broadcast along this
dimension, otherwise an error will be raised.
"""
raise NotImplementedError()
def __getitem__(self, key):
"""
Shortcut syntax to access the numerical data in a component.
Equivalent to::
component = data.get_data(component_id)
The key can be either just a component name, component ID, or a
component name/ID and a view.
"""
# Note: this method is generic and shouldn't need to be overriden by
# subclasses.
key, view = split_component_view(key)
if isinstance(key, str):
_k = key
key = self.find_component_id(key)
if key is None:
raise IncompatibleAttribute(_k)
return self.get_data(key, view=view)
def _ipython_key_completions_(self):
return [cid.label for cid in self.components]
[docs] @property
def world_component_ids(self):
"""
A list of :class:`~glue.core.component_id.ComponentID` giving all
world coordinate component IDs in the data.
"""
if self.coords is None:
return []
elif not hasattr(self, '_world_component_ids'):
self._world_component_ids = []
self._world_components = {}
for i in range(self.ndim):
# Note: we use a Component object here for convenience but we
# don't actually expose it via the BaseCartesianData API - in
# get_data we extract the data from the component.
comp = CoordinateComponent(self, i, world=True)
label = axis_label(self.coords, i)
cid = ComponentID(label, parent=self)
self._world_component_ids.append(cid)
self._world_components[cid] = comp
return self._world_component_ids
def _set_externally_derivable_components(self, derivable_components):
"""
Externally deriable components are components identified by component
IDs from other datasets.
This method is meant for internal use only and is called by the link
manager. The ``derivable_components`` argument should be set to a
dictionary where the keys are the derivable component IDs, and the
values are DerivedComponent instances which can be used to get the
data.
"""
# Note that even though Component objects are not normally exposed as
# part of the BaseCartesianData API, we use these internally here as
# a convenience, and extract the data from them in get_data. The actual
# derived components are however used in the Data class.
if len(self._externally_derivable_components) == 0 and len(derivable_components) == 0:
return
elif len(self._externally_derivable_components) == len(derivable_components):
for key in derivable_components:
if key in self._externally_derivable_components:
if self._externally_derivable_components[key].link is not derivable_components[key].link:
break
else:
break
else:
return # Unchanged!
self._externally_derivable_components = derivable_components
if self.hub:
msg = ExternallyDerivableComponentsChangedMessage(self)
self.hub.broadcast(msg)
def _get_external_link(self, cid):
if cid in self._externally_derivable_components:
return self._externally_derivable_components[cid].link
else:
return None
def _get_coordinate_transform(self, world_cid):
if world_cid in self._world_components:
def transform(values):
return self._world_components._calculate(view=values)
return transform
else:
return None
def _set_pixel_aligned_data(self, pixel_aligned_data):
"""
Pixel-aligned data are datasets that contain pixel component IDs
that are equivalent (identically, not transformed) with all pixel
component IDs in the present dataset.
Note that the other datasets may have more but not fewer dimensions, so
this information may not be symmetric between datasets with differing
numbers of dimensions.
"""
# First check if anything has changed, as if not then we should just
# leave things as-is and avoid emitting a message.
if len(self._pixel_aligned_data) == len(pixel_aligned_data):
for data in self._pixel_aligned_data:
if data not in pixel_aligned_data or pixel_aligned_data[data] != self._pixel_aligned_data[data]:
break
else:
return
self._pixel_aligned_data = pixel_aligned_data
if self.hub:
msg = PixelAlignedDataChangedMessage(self)
self.hub.broadcast(msg)
[docs] @property
def pixel_aligned_data(self):
"""
Information about other datasets in the same data collection that have
matching or a subset of pixel component IDs.
This is returned as a dictionary where each key is a dataset with
matching pixel component IDs, and the value is the order in which the
pixel component IDs of the other dataset can be found in the current
one.
"""
return self._pixel_aligned_data
[docs]class Data(BaseCartesianData):
"""
The basic data container in Glue.
The data object stores data as a collection of
:class:`~glue.core.component.Component` objects. Each component stored in a
dataset must have the same shape.
Catalog data sets are stored such that each column is a distinct
1-dimensional :class:`~glue.core.component.Component`.
There are several ways to extract the actual numerical data stored in a
:class:`~glue.core.data.Data` object::
data = Data(x=[1, 2, 3], label='data')
xid = data.id['x']
data[xid]
data.get_component(xid).data
data['x'] # if 'x' is a unique component name
Likewise, datasets support :ref:`fancy indexing <numpy:basics.indexing>`::
data[xid, 0:2]
data[xid, [True, False, True]]
See also: :ref:`data_tutorial`
Parameters
----------
label : `str`
The name of the dataset.
coords : :class:`~glue.core.coordinates.Coordinates`
The coordinates object to use to define world coordinates.
"""
def __init__(self, label="", coords=None, **kwargs):
super(Data, self).__init__()
self.label = label
self._shape = ()
# Components
self._components = OrderedDict()
self._pixel_component_ids = ComponentIDList()
self._world_component_ids = ComponentIDList()
# Coordinate conversion object
self.coords = coords
self.id = ComponentIDDict(self)
self._coordinate_links = []
self.edit_subset = None
for lbl, data in sorted(kwargs.items()):
self.add_component(data, lbl)
self._key_joins = {}
# To avoid circular references when saving objects with references to
# the data, we make sure that all Data objects have a UUID that can
# uniquely identify them.
self.uuid = str(uuid.uuid4())
@property
def coords(self):
"""
The coordinates object for the data.
"""
return self._coords
[docs] @coords.setter
def coords(self, value):
if (hasattr(self, '_coords') and self._coords != value) or not hasattr(self, '_coords'):
self._coords = value
if len(self.components) > 0:
self._update_world_components(self.ndim)
[docs] @property
def ndim(self):
return len(self.shape)
[docs] @property
def shape(self):
return self._shape
@property
def label(self):
return self._label
[docs] @label.setter
def label(self, value):
if getattr(self, '_label', None) != value:
self._label = value
self.broadcast(attribute='label')
elif value is None:
self._label = value
[docs] @property
def size(self):
return np.prod(self.shape)
@contract(component=Component)
def _check_can_add(self, component):
if isinstance(component, DerivedComponent):
return component._data is self
else:
if len(self._components) == 0:
return True
else:
if all(comp.shape == () for comp in self._components.values()):
return True
else:
return component.shape == self.shape
[docs] @contract(cid=ComponentID, returns=np.dtype)
def dtype(self, cid):
"""Lookup the dtype for the data associated with a ComponentID"""
# grab a small piece of data
ind = tuple([slice(0, 1)] * self.ndim)
arr = self.get_data(cid, view=ind)
return arr.dtype
[docs] @contract(component_id=ComponentID)
def remove_component(self, component_id):
""" Remove a component from a data set
Parameters
----------
component_id : :class:`~glue.core.component_id.ComponentID`
The component to remove.
"""
# TODO: avoid too many messages when removing a component triggers
# the removal of derived components.
if component_id in self._components:
self._components.pop(component_id)
self._removed_derived_that_depend_on(component_id)
if self.hub:
msg = DataRemoveComponentMessage(self, component_id)
self.hub.broadcast(msg)
msg = ComponentsChangedMessage(self)
self.hub.broadcast(msg)
def _removed_derived_that_depend_on(self, component_id):
"""
Remove internal derived components that can no longer be derived.
"""
remove = []
for cid in self.derived_components:
comp = self.get_component(cid)
if component_id in comp.link.get_from_ids():
remove.append(cid)
for cid in remove:
self.remove_component(cid)
[docs] @contract(other='isinstance(Data)',
cid='cid_like',
cid_other='cid_like')
def join_on_key(self, other, cid, cid_other):
"""
Create an *element* mapping to another dataset, by joining on values of
ComponentIDs in both datasets.
This join allows any subsets defined on `other` to be propagated to
self. The different ways to call this method are described in the
**Examples** section below.
Parameters
----------
other : :class:`~glue.core.data.Data`
Data object to join with.
cid : `str` or :class:`~glue.core.component_id.ComponentID` or `iterable` thereof
Component(s) in this dataset to use as a key.
cid_other : `str` or :class:`~glue.core.component_id.ComponentID` or `iterable` thereof
Component(s) in the other dataset to use as a key.
Examples
--------
There are several ways to use this function, depending on how many
components are passed to ``cid`` and ``cid_other``.
**Joining on single components**
First, one can specify a single component ID for both ``cid`` and
``cid_other``: this is the standard mode, and joins one component from
one dataset to the other:
>>> d1 = Data(x=[1, 2, 3, 4, 5], k1=[0, 0, 1, 1, 2], label='d1')
>>> d2 = Data(y=[2, 4, 5, 8, 4], k2=[1, 3, 1, 2, 3], label='d2')
>>> d2.join_on_key(d1, 'k2', 'k1')
Selecting all values in ``d1`` where x is greater than 2 returns
the last three items as expected:
>>> s = d1.new_subset()
>>> s.subset_state = d1.id['x'] > 2
>>> s.to_mask()
array([False, False, True, True, True], dtype=bool)
The linking was done between k1 and k2, and the values of
k1 for the last three items are 1 and 2 - this means that the
first, third, and fourth item in ``d2`` will then get selected,
since k2 has a value of either 1 or 2 for these items.
>>> s = d2.new_subset()
>>> s.subset_state = d1.id['x'] > 2
>>> s.to_mask()
array([ True, False, True, True, False], dtype=bool)
**Joining on multiple components**
.. note:: This mode is currently slow, and will be optimized
significantly in future.
Next, one can specify several components for each dataset: in this
case, the number of components given should match for both datasets.
This causes items in both datasets to be linked when (and only when)
the set of keys match between the two datasets:
>>> d1 = Data(x=[1, 2, 3, 5, 5],
... y=[0, 0, 1, 1, 2], label='d1')
>>> d2 = Data(a=[2, 5, 5, 8, 4],
... b=[1, 3, 2, 2, 3], label='d2')
>>> d2.join_on_key(d1, ('a', 'b'), ('x', 'y'))
Selecting all items where x is 5 in ``d1`` in which x is a
component works as expected and selects the two last items::
>>> s = d1.new_subset()
>>> s.subset_state = d1.id['x'] == 5
>>> s.to_mask()
array([False, False, False, True, True], dtype=bool)
If we apply this selection to ``d2``, only items where a is 5
and b is 2 will be selected:
>>> s = d2.new_subset()
>>> s.subset_state = d1.id['x'] == 5
>>> s.to_mask()
array([False, False, True, False, False], dtype=bool)
and in particular, the second item (where a is 5 and b is 3) is not
selected.
**One-to-many and many-to-one joining**
Finally, you can specify one component in one dataset and multiple ones
in the other. In the case where one component is specified for this
dataset and multiple ones for the other dataset, then when an item
is selected in the other dataset, it will cause any item in the present
dataset which matches any of the keys in the other data to be selected:
>>> d1 = Data(x=[1, 2, 3], label='d1')
>>> d2 = Data(a=[1, 1, 2],
... b=[2, 3, 3], label='d2')
>>> d1.join_on_key(d2, 'x', ('a', 'b'))
In this case, if we select all items in ``d2`` where a is 2, this
will select the third item:
>>> s = d2.new_subset()
>>> s.subset_state = d2.id['a'] == 2
>>> s.to_mask()
array([False, False, True], dtype=bool)
Since we have joined the datasets using both a and b, we select
all items in ``d1`` where x is either the value or a or b
(2 or 3) which means we select the second and third item:
>>> s = d1.new_subset()
>>> s.subset_state = d2.id['a'] == 2
>>> s.to_mask()
array([False, True, True], dtype=bool)
We can also join the datasets the other way around:
>>> d1 = Data(x=[1, 2, 3], label='d1')
>>> d2 = Data(a=[1, 1, 2],
... b=[2, 3, 3], label='d2')
>>> d2.join_on_key(d1, ('a', 'b'), 'x')
In this case, selecting items in ``d1`` where x is 1 selects the
first item, as expected:
>>> s = d1.new_subset()
>>> s.subset_state = d1.id['x'] == 1
>>> s.to_mask()
array([ True, False, False], dtype=bool)
This then causes any item in ``d2`` where either a or b are 1
to be selected, i.e. the first two items:
>>> s = d2.new_subset()
>>> s.subset_state = d1.id['x'] == 1
>>> s.to_mask()
array([ True, True, False], dtype=bool)
"""
# To make things easier, we transform all component inputs to a tuple
if isinstance(cid, str) or isinstance(cid, ComponentID):
cid = (cid,)
if isinstance(cid_other, str) or isinstance(cid_other, ComponentID):
cid_other = (cid_other,)
if len(cid) > 1 and len(cid_other) > 1 and len(cid) != len(cid_other):
raise Exception("Either the number of components in the key join "
"sets should match, or one of the component sets "
"should contain a single component.")
def get_component_id(data, name):
if isinstance(name, ComponentID):
return name
else:
cid = data.find_component_id(name)
if cid is None:
raise ValueError("ComponentID not found in %s: %s" %
(data.label, name))
return cid
cid = tuple(get_component_id(self, name) for name in cid)
cid_other = tuple(get_component_id(other, name) for name in cid_other)
self._key_joins[other] = (cid, cid_other)
other._key_joins[self] = (cid_other, cid)
[docs] @contract(component='component_like', label='cid_like')
def add_component(self, component, label):
""" Add a new component to this data set.
Parameters
----------
component : :class:`~glue.core.component.Component` or array-like
Object to add.
label : `str` or :class:`~glue.core.component_id.ComponentID`
The label. If this is a string, a new
:class:`glue.core.component_id.ComponentID`
with this label will be created and associated with the Component.
Raises
------
`TypeError`, if label is invalid.
`ValueError`, if the component has an incompatible shape.
Returns
-------
:class:`glue.core.component_id.ComponentID`
The ComponentID associated with the newly-added component.
"""
if isinstance(component, ComponentLink):
return self.add_component_link(component, label=label)
if not isinstance(component, Component):
component = Component.autotyped(component)
if isinstance(component, DerivedComponent):
if len(self._components) == 0:
raise TypeError("Cannot add a derived component as a first component")
component.set_parent(self)
if not self._check_can_add(component):
raise ValueError("The dimensions of component %s are "
"incompatible with the dimensions of this data: "
"%r vs %r" % (label, component.shape, self.shape))
if isinstance(label, ComponentID):
component_id = label
if component_id.parent is None:
component_id.parent = self
else:
component_id = ComponentID(label, parent=self)
if len(self._components) == 0:
# TODO: make sure the following doesn't raise a componentsraised message
self._create_pixel_and_world_components(ndim=component.ndim)
# In some cases, such as when loading a session, we actually disable the
# auto-creation of pixel and world coordinates, so the first component
# may be a coordinate component with no shape. Therefore we only set the
# shape once a component has a valid shape rather than strictly on the
# first component.
if self._shape == () and component.shape != ():
self._shape = component.shape
is_present = component_id in self._components
self._components[component_id] = component
if self.hub and not is_present:
msg = DataAddComponentMessage(self, component_id)
self.hub.broadcast(msg)
msg = ComponentsChangedMessage(self)
self.hub.broadcast(msg)
return component_id
[docs] @contract(link=ComponentLink,
label='cid_like|None',
returns=DerivedComponent)
def add_component_link(self, link, label=None):
"""
Shortcut method for generating a new
:class:`~glue.core.component.DerivedComponent` from a ComponentLink
object, and adding it to a data set.
Parameters
----------
link : :class:`~glue.core.component_link.ComponentLink`
The link to use to generate a new component
label : :class:`~glue.core.component_id.ComponentID` or `str`
The ComponentID or label to attach to.
Returns
-------
component : :class:`~glue.core.component.DerivedComponent`
The component that was added
"""
if label is not None:
if not isinstance(label, ComponentID):
label = ComponentID(label, parent=self)
link.set_to_id(label)
if link.get_to_id() is None:
raise TypeError("Cannot add component_link: "
"has no 'to' ComponentID")
for cid in link.get_from_ids():
if cid not in self.components:
raise ValueError("Can only add internal links with add_component_link "
"- use DataCollection.add_link to add inter-data links")
dc = DerivedComponent(self, link)
to_ = link.get_to_id()
self.add_component(dc, label=to_)
return dc
def _create_pixel_and_world_components(self, ndim):
self._update_pixel_components(ndim)
self._update_world_components(ndim)
def _update_pixel_components(self, ndim):
for i in range(ndim):
comp = CoordinateComponent(self, i)
label = pixel_label(i, ndim)
cid = PixelComponentID(i, "Pixel Axis %s" % label, parent=self)
self.add_component(comp, cid)
self._pixel_component_ids.append(cid)
def _update_world_components(self, ndim):
if self.hub:
delay_callbacks = self.hub.delay_callbacks
else:
@contextmanager
def delay_callbacks():
yield
with delay_callbacks():
for cid in self._world_component_ids[:]:
self.remove_component(cid)
self._world_component_ids.remove(cid)
if self.coords:
for i in range(ndim):
comp = CoordinateComponent(self, i, world=True)
label = axis_label(self.coords, i)
cid = self.add_component(comp, label)
self._world_component_ids.append(cid)
self._set_up_coordinate_component_links(ndim)
def _set_up_coordinate_component_links(self, ndim):
if self.coords is None:
return
result = []
for i in range(ndim):
link = CoordinateComponentLink(self._pixel_component_ids,
self._world_component_ids[i],
self.coords, i)
result.append(link)
link = CoordinateComponentLink(self._world_component_ids,
self._pixel_component_ids[i],
self.coords, i, pixel2world=False)
result.append(link)
self._coordinate_links = result
return result
[docs] @property
def components(self):
"""All :class:`ComponentIDs <glue.core.component_id.ComponentID>` in the Data.
Returns
-------
`list`
"""
return list(self._components.keys())
[docs] @property
def externally_derivable_components(self):
return list(self._externally_derivable_components.keys())
[docs] @property
def coordinate_components(self):
"""The ComponentIDs associated with a :class:`~glue.core.component.CoordinateComponent`.
Returns
-------
`list`
"""
return [c for c in self.component_ids() if
isinstance(self._components[c], CoordinateComponent)]
[docs] @property
def main_components(self):
return [c for c in self.component_ids() if
not isinstance(self._components[c], (DerivedComponent, CoordinateComponent))]
[docs] @property
def derived_components(self):
"""The ComponentIDs for each :class:`~glue.core.component.DerivedComponent`.
Returns
-------
`list`
"""
return [c for c in self.component_ids() if
isinstance(self._components[c], DerivedComponent)]
[docs] @property
def pixel_component_ids(self):
"""
The :class:`ComponentIDs <glue.core.component_id.ComponentID>` for each pixel coordinate.
"""
return self._pixel_component_ids
[docs] @property
def world_component_ids(self):
"""
The :class:`ComponentIDs <glue.core.component_id.ComponentID>` for each world coordinate.
"""
return self._world_component_ids
[docs] @contract(label='cid_like', returns='inst($ComponentID)|None')
def find_component_id(self, label):
""" Retrieve component_ids associated by label name.
Parameters
----------
label ::class:`~glue.core.component_id.ComponentID` or `str`
ComponentID to search for.
Returns
-------
:class:`~glue.core.component_id.ComponentID` or `None`
The associated ComponentID if label is found and unique, else None.
First, this checks whether the component ID is present and unique in
the primary (non-derived) components of the data, and if not then
the derived components are checked. If there is one instance of the
label in the primary and one in the derived components, the primary
one takes precedence.
"""
for cid_set in (self.main_components, self.derived_components, self.coordinate_components, list(self._externally_derivable_components)):
result = []
for cid in cid_set:
if isinstance(label, ComponentID):
if cid is label:
result.append(cid)
else:
if cid.label == label:
result.append(cid)
if len(result) == 1:
return result[0]
elif len(result) > 1:
return None
return None
[docs] @property
def links(self):
"""
A list of all the links internal to the dataset.
"""
return self.coordinate_links + self.derived_links
[docs] @property
def coordinate_links(self):
"""
A list of the ComponentLinks that connect pixel and world. If no
coordinate transformation object is present, return an empty list.
"""
return self._coordinate_links
[docs] @property
def derived_links(self):
"""
A list of the links present inside all of the DerivedComponent objects
in this dataset.
"""
return [self.get_component(cid).link for cid in self.derived_components]
[docs] @contract(returns='list(inst($ComponentID))')
def component_ids(self):
"""
Equivalent to :attr:`Data.components`
"""
return ComponentIDList(self._components.keys())
[docs] @contract(old=ComponentID, new=ComponentID)
def update_id(self, old, new):
"""
Reassign a component to a different :class:`glue.core.component_id.ComponentID`
Parameters
----------
old : :class:`~glue.core.component_id.ComponentID`
The old component ID.
new : :class:`~glue.core.component_id.ComponentID`
The new component ID.
"""
if new is old:
return
if new.parent is None:
new.parent = self
changed = False
if old in self._components:
# We want to keep the original order, so we can't just do:
# self._components[new] = self._components[old]
# which will put the new component ID at the end, but instead
# we need to do:
self._components = OrderedDict((new, value) if key is old else (key, value)
for key, value in self._components.items())
changed = True
try:
index = self._pixel_component_ids.index(old)
self._pixel_component_ids[index] = new
changed = True
except ValueError:
pass
try:
index = self._world_component_ids.index(old)
self._world_component_ids[index] = new
changed = True
except ValueError:
pass
if changed and self.hub is not None:
# remove old component and broadcast the change
# see #508 for discussion of this
msg = ComponentReplacedMessage(self, old, new)
self.hub.broadcast(msg)
def __str__(self):
s = "Data Set: %s\n" % self.label
s += "Number of dimensions: %i\n" % self.ndim
s += "Shape: %s\n" % ' x '.join([str(x) for x in self.shape])
categories = [('Main', self.main_components),
('Derived', self.derived_components),
('Coordinate', self.coordinate_components)]
for category, components in categories:
if len(components) > 0:
s += category + " components:\n"
for cid in components:
comp = self.get_component(cid)
if comp.units is None or comp.units == '':
s += " - {0}\n".format(cid)
else:
s += " - {0} [{1}]\n".format(cid, comp.units)
return s[:-1]
def __repr__(self):
return 'Data (label: %s)' % self.label
def __setattr__(self, name, value):
if name == "hub" and hasattr(self, 'hub') \
and self.hub is not value and self.hub is not None:
raise AttributeError("Data has already been assigned "
"to a different hub")
object.__setattr__(self, name, value)
[docs] def get_data(self, cid, view=None):
if isinstance(cid, ComponentLink):
return cid.compute(self, view)
if cid in self._components:
comp = self._components[cid]
elif cid in self._externally_derivable_components:
comp = self._externally_derivable_components[cid]
else:
raise IncompatibleAttribute(cid)
if view is not None:
result = comp[view]
else:
result = comp.data
return result
[docs] def get_kind(self, cid):
comp = self.get_component(cid)
if comp.datetime:
return 'datetime'
elif comp.numeric:
return 'numerical'
elif comp.categorical:
return 'categorical'
else:
raise TypeError("Unknown data kind")
[docs] def get_mask(self, subset_state, view=None):
try:
return subset_state.to_mask(self, view=view)
except IncompatibleAttribute:
return get_mask_with_key_joins(self, self._key_joins, subset_state, view=view)
def __setitem__(self, key, value):
"""
Wrapper for data.add_component()
"""
self.add_component(value, key)
[docs] @contract(component_id='cid_like|None', returns=Component)
def get_component(self, component_id):
"""Fetch the component corresponding to component_id.
Parameters
----------
component_id : :class:`~glue.core.component_id.ComponentID`
The ID for the component to retrieve.
"""
if component_id is None:
raise IncompatibleAttribute()
if isinstance(component_id, str):
component_id = self.id[component_id]
if component_id in self._components:
return self._components[component_id]
elif component_id in self._externally_derivable_components:
return self._externally_derivable_components[component_id]
else:
raise IncompatibleAttribute(component_id)
[docs] def to_dataframe(self, index=None):
"""Convert the Data object into a :class:`pandas.DataFrame` object.
Parameters
----------
index : index-like
Any object that can be passed to the :class:`pandas.Series` constructor.
Returns
-------
:class:`pandas.DataFrame`
"""
h = lambda comp: self.get_component(comp).to_series(index=index)
df = pd.DataFrame(dict((comp.label, h(comp)) for comp in self.components))
order = [comp.label for comp in self.components]
return df[order]
[docs] def reorder_components(self, component_ids):
"""
Reorder the components using a list of component IDs. The new set
of component IDs has to match the existing set (though order may differ).
"""
# We need to be careful because component IDs overload == so we can't
# use the normal ways to test whether the component IDs are the same
# as self.components - instead we need to explicitly use id
if len(component_ids) != len(self.components):
raise ValueError("Number of component in component_ids does not "
"match existing number of components")
if set(id(c) for c in self.components) != set(id(c) for c in component_ids):
raise ValueError("specified component_ids should match existing components")
existing = self.components
for idx in range(len(component_ids)):
if component_ids[idx] is not existing[idx]:
break
else:
# If we get here then the suggested order is the same as the existing one
return
# TODO: We could instead sort in-place using the move_to_end method on OrderedDict
self._components = OrderedDict((key, self._components[key]) for key in component_ids)
if self.hub:
msg = DataReorderComponentMessage(self, list(self._components))
self.hub.broadcast(msg)
[docs] @contract(mapping="dict(inst($Component, $ComponentID):array_like)")
def update_components(self, mapping):
"""
Change the numerical data associated with some of the Components
in this Data object.
All changes to component numerical data should use this method,
which broadcasts the state change to the appropriate places.
Parameters
----------
mapping : `dict`
A dictionary mapping Components or ComponenIDs to arrays.
This method has the following restrictions:
- New components must have the same shape as old components
- Component subclasses cannot be updated.
"""
for comp, data in mapping.items():
if isinstance(comp, ComponentID):
comp = self.get_component(comp)
data = np.asarray(data)
if data.shape != self.shape:
raise ValueError("Cannot change shape of data")
comp._data = data
# alert hub of the change
if self.hub is not None:
msg = NumericalDataChangedMessage(self)
self.hub.broadcast(msg)
for subset in self.subsets:
clear_cache(subset.subset_state.to_mask)
[docs] def update_values_from_data(self, data):
"""
Replace numerical values in data to match values from another dataset.
Notes
-----
This method drops components that aren't present in the new data, and
adds components that are in the new data that were not in the original
data. The matching is done by component label, and components are
resized if needed. This means that for components with matching labels
in the original and new data, the
:class:`~glue.core.component_id.ComponentID` are preserved, and
existing plots and selections will be updated to reflect the new
values. Note that the coordinates are also copied, but the style is
**not** copied.
"""
old_labels = [cid.label for cid in self.components]
new_labels = [cid.label for cid in data.components]
if len(old_labels) == len(set(old_labels)):
old_labels = set(old_labels)
else:
raise ValueError("Non-unique component labels in original data")
if len(new_labels) == len(set(new_labels)):
new_labels = set(new_labels)
else:
raise ValueError("Non-unique component labels in new data")
# Remove components that don't have a match in new data
for cname in old_labels - new_labels:
cid = self.find_component_id(cname)
self.remove_component(cid)
# Update shape
self._shape = data._shape
# Update components that exist in both. Note that we can't just loop
# over old_labels & new_labels since we need to make sure we preserve
# the order of the components, and sets don't preserve order.
for cid in self.components:
cname = cid.label
if cname in old_labels & new_labels:
comp_old = self.get_component(cname)
comp_new = data.get_component(cname)
comp_old._data = comp_new._data
# Add components that didn't exist in original one. As above, we try
# and preserve the order of components as much as possible.
for cid in data.components:
cname = cid.label
if cname in new_labels - old_labels:
cid = data.find_component_id(cname)
comp_new = data.get_component(cname)
self.add_component(comp_new, cid.label)
# Update data label
self.label = data.label
# Update data coordinates
self.coords = data.coords
# alert hub of the change
if self.hub is not None:
msg = NumericalDataChangedMessage(self)
self.hub.broadcast(msg)
for subset in self.subsets:
clear_cache(subset.subset_state.to_mask)
# The following are methods for accessing the data in various ways that
# can be overriden by subclasses that want to improve performance.
[docs] def compute_statistic(self, statistic, cid, subset_state=None, axis=None,
finite=True, positive=False, percentile=None, view=None,
random_subset=None, n_chunk_max=40000000):
"""
Compute a statistic for the data.
Parameters
----------
statistic : {'minimum', 'maximum', 'mean', 'median', 'sum', 'percentile'}
The statistic to compute
cid : :class:`~glue.core.component_id.ComponentID` or `str`
The component ID to compute the statistic on - if given as a string
this will be assumed to be for the component belonging to the dataset
(not external links).
subset_state : :class:`~glue.core.subset.SubsetState`, optional
If specified, the statistic will only include the values that are in
the subset specified by this subset state.
axis : `int` or `tuple` of `int`, optional
If specified, the axis/axes to compute the statistic over.
finite : `bool`, optional
Whether to include only finite values in the statistic. This should
be `True` to ignore NaN/Inf values
positive : `bool`, optional
Whether to include only (strictly) positive values in the statistic.
This is used for example when computing statistics of data shown in
log space.
percentile : `float`, optional
If ``statistic`` is ``'percentile'``, the ``percentile`` argument
should be given and specify the percentile to calculate in the
range [0:100]
random_subset : `int`, optional
If specified, this should be an integer giving the number of values
to use for the statistic. This can only be used if ``axis`` is `None`
n_chunk_max : `int`, optional
If there are more elements in the array than this value, operate in
chunks with at most this size.
"""
# TODO: generalize chunking to more types of axis
# In recent version of Numpy, using lists is not the same as using
# tuples, so we make sure we always use tuples to avoid confusion.
if isinstance(view, list):
view = tuple(view)
if (view is None and
isinstance(axis, tuple) and
len(axis) > 0 and
len(axis) == self.ndim - 1 and
self.size > n_chunk_max and
not isinstance(subset_state, SliceSubsetState)):
# We operate in chunks here to avoid memory issues.
axis_index = [a for a in range(self.ndim) if a not in axis][0]
# In the specific case where the subset state depends only on pixel
# component IDs but not the one for the chunk iteration axis used
# here, we should not need to chunk. However this doesn't quite
# work because compute_statistic still makes a copy of the data
# so we need to make sure we never have too large arrays there.
# efficient_subset_state = False
# if subset_state is not None:
# from glue.core.link_manager import pixel_cid_to_pixel_cid_matrix
# for att in subset_state.attributes:
# # TODO: in principle we cold still deal with non-pixel
# # componnet IDs, so this should be fixed.
# if not isinstance(att, PixelComponentID):
# break
# matrix = pixel_cid_to_pixel_cid_matrix(att.parent, self)
# if matrix[att.axis, axis_index]:
# break
# else:
# efficient_subset_state = True
# For now, just assume we always have to chunk
efficient_subset_state = False
if not efficient_subset_state:
result = np.zeros(self.shape[axis_index])
chunk_shape = list(self.shape)
# Deliberately leave n_chunks as float to not round twice
n_chunks = self.size / n_chunk_max
chunk_shape[axis_index] = max(1, int(chunk_shape[axis_index] / n_chunks))
for chunk_view in iterate_chunks(self.shape, chunk_shape=chunk_shape):
values = self.compute_statistic(statistic, cid, subset_state=subset_state,
axis=axis, finite=finite, positive=positive,
percentile=percentile, view=chunk_view)
result[chunk_view[axis_index]] = values
return result
# We initialize subarray_slices here because if it is set at any point
# later we will need to pad out the result of compute_statistic.
subarray_slices = None
chunk_view = None
if subset_state:
if isinstance(subset_state, SliceSubsetState) and view is None:
mask = None
data = subset_state.to_array(self, cid)
else:
mask = subset_state.to_mask(self, view)
unbroadcast_mask = unbroadcast(mask)
if np.any(unbroadcast_mask):
# Find minimal subarray containing the masked area. At this
# point we've already accessed all the values in unbroadcast_mask
# so the calls to .any() below should not have a significant
# performance impact.
subarray_slices = []
for idim in range(mask.ndim):
# Check whether any values should be included for each
# element along the axis being considered. For efficiency
# we use the unbroadcast mask here.
collapse_axes = tuple(index for index in range(mask.ndim) if index != idim)
valid = unbroadcast_mask.any(axis=collapse_axes)
# Since we just used the unbroadcast mask, we need to
# broadcast it back to the original mask shape.
valid = np.broadcast_to(valid, mask.shape[idim:idim + 1])
# We now find the first and last value for which the mask
# is set, to determine the slice of the minimal subarray
indices = np.where(valid)[0]
subarray_slices.append(slice(np.min(indices), np.max(indices) + 1))
subarray_slices = tuple(subarray_slices)
# We now need to determine the view for which to extract the
# data, which essentially needs to combine the original view
# which was used to compute the mask, and the new view which
# extracts a subset of this mask.
# For some views we don't support this, so we keep track of
# whether we can actually use subarray_slices above
use_subarray_slices = True
if view is None or view is Ellipsis:
# In the case where view is None, things are pretty
# simple since we just use subarray_slices to view the data
view = subarray_slices
elif isinstance(view, (list, tuple)):
# At this point view is a list or a tuple, which could
# contain either scalar values or slice objects. In
# addition, it may contain fewer elements than are needed
# to slice the data, so we need to take this into account.
mask_idim = 0
new_view = []
for idim in range(self.ndim):
if idim >= len(view):
new_view.append(subarray_slices[mask_idim])
mask_idim += 1
elif isinstance(view[idim], slice):
if view[idim].step is not None and view[idim].step != 1:
# This makes things more complicated, so bail out at this point
use_subarray_slices = False
new_view = view
break
view_start, _, _ = view[idim].indices(self.shape[idim])
sub_start, sub_stop, _ = subarray_slices[mask_idim].indices(mask.shape[mask_idim])
new_view.append(slice(view_start + sub_start,
view_start + sub_stop))
mask_idim += 1
else:
new_view.append(view[idim])
# This is the chunk view, which we'll need later
chunk_view = view
view = tuple(new_view)
else: # pragma: nocover
# This should probably never happen, but just in case!
use_subarray_slices = False
if use_subarray_slices:
# Extract the mask in the subarray region. The view will
# then also take into account the subarray slices in this
# case.
mask = mask[subarray_slices]
data = self.get_data(cid, view)
else:
if axis is None:
return np.nan
else:
if isinstance(axis, int):
axis = [axis]
final_shape = [mask.shape[i] for i in range(mask.ndim) if i not in axis]
return np.broadcast_to(np.nan, final_shape)
else:
data = self.get_data(cid, view=view)
mask = None
if isinstance(data, categorical_ndarray):
data = data.codes
if axis is None and mask is None:
# Since we are just finding overall statistics, not along axes, we
# can remove any broadcasted dimension since these should not affect
# the statistics.
data = unbroadcast(data)
if random_subset and data.size > random_subset:
if DASK_INSTALLED and isinstance(data, da.Array):
# We shouldn't cache _random_subset_indices_dask here because
# it might be different for different dask arrays
random_subset_indices_dask = (data.size, random_views_for_dask_array(data, random_subset, n_chunks=10))
data = da.hstack([data[slices].ravel() for slices in random_subset_indices_dask[1]])
if mask is not None:
mask = da.hstack([mask[slices].ravel() for slices in random_subset_indices_dask[1]])
else:
if not hasattr(self, '_random_subset_indices') or self._random_subset_indices[0] != data.size:
self._random_subset_indices = (data.size, np.random.randint(0, data.size, random_subset))
data = data.ravel(order="K")[self._random_subset_indices[1]]
if mask is not None:
mask = mask.ravel(order="K")[self._random_subset_indices[1]]
result = compute_statistic(statistic, data, mask=mask, axis=axis, finite=finite,
positive=positive, percentile=percentile)
if subarray_slices is None or axis is None:
return result
else:
# Since subarray_slices was set above, we need to determine the
# shape of the full results had subarray_slices not been set,
# then insert the result into it. If axis is None, then we don't
# need to do anything, and this is covered by the first clause
# of the if statement above. Likewise if a view was specified,
# only the result within the view is returned.
if not isinstance(axis, tuple):
axis = (axis,)
result_slices = tuple([subarray_slices[idim] for idim in range(self.ndim) if idim not in axis])
if chunk_view is None:
full_shape = [self.shape[idim] for idim in range(self.ndim) if idim not in axis]
else:
chunk_shape = subset_state.to_mask(self, chunk_view).shape
full_shape = [chunk_shape[idim] for idim in range(self.ndim) if idim not in axis]
full_result = np.zeros(full_shape) * np.nan
full_result[result_slices] = result
return full_result
[docs] def compute_histogram(self, cids, weights=None, range=None, bins=None, log=None, subset_state=None):
"""
Compute an n-dimensional histogram with regularly spaced bins.
Currently this only implements 1-D histograms.
Parameters
----------
cids : `list` of `str` or :class:`~glue.core.component_id.ComponentID`
Component IDs to compute the histogram over.
weights : `str` or :class:`~glue.core.component_id.ComponentID`
Component ID to use for the histogram weights.
range : `list` of `tuple`
The ``(min, max)`` of the histogram range.
bins : `list` of `int`
The number of bins.
log : `list` of `bool`
Whether to compute the histogram in log space.
subset_state : :class:`~glue.core.subset.SubsetState`, optional
If specified, the histogram will only take into account values in
the subset state.
"""
if len(cids) > 2:
raise NotImplementedError()
ndim = len(cids)
x = self.get_data(cids[0])
if isinstance(x, categorical_ndarray):
x = x.codes
if ndim > 1:
y = self.get_data(cids[1])
if isinstance(y, categorical_ndarray):
y = y.codes
if weights is not None:
w = self.get_data(weights)
if isinstance(w, categorical_ndarray):
w = w.codes
else:
w = None
# Some operations below don't work well when mixing dask and non-dask
# arrays, so we make sure that if one is a dask array we convert the
# other one too.
if DASK_INSTALLED and ndim > 1:
if isinstance(x, da.Array) and not isinstance(y, da.Array):
y = da.asarray(y)
if not isinstance(x, da.Array) and isinstance(y, da.Array):
x = da.asarray(x)
if subset_state is not None:
mask = self.get_mask(subset_state)
if DASK_INSTALLED and isinstance(x, da.Array) and not isinstance(mask, da.Array):
x = x[da.asarray(mask)]
else:
x = x[mask]
if ndim > 1:
if DASK_INSTALLED and isinstance(y, da.Array) and not isinstance(mask, da.Array):
y = y[da.asarray(mask)]
else:
y = y[mask]
if w is not None:
if DASK_INSTALLED and isinstance(w, da.Array) and not isinstance(mask, da.Array):
w = w[da.asarray(mask)]
else:
w = w[mask]
if ndim == 1:
xmin, xmax = range[0]
xmin, xmax = sorted((xmin, xmax))
keep = (x >= xmin) & (x <= xmax)
else:
(xmin, xmax), (ymin, ymax) = range
xmin, xmax = sorted((xmin, xmax))
ymin, ymax = sorted((ymin, ymax))
keep = (x >= xmin) & (x <= xmax) & (y >= ymin) & (y <= ymax)
if x.dtype.kind == 'M':
x = datetime64_to_mpl(x)
xmin = datetime64_to_mpl(xmin)
xmax = datetime64_to_mpl(xmax)
else:
keep &= ~np.isnan(x)
if ndim > 1:
if y.dtype.kind == 'M':
y = datetime64_to_mpl(y)
ymin = datetime64_to_mpl(ymin)
ymax = datetime64_to_mpl(ymax)
else:
keep &= ~np.isnan(y)
x = x[keep]
if ndim > 1:
y = y[keep]
if w is not None:
w = w[keep]
# For now, compute dask arrays at this point. In future we could delegate
# the histogram calculation to dask. The extra call to
# np.asarray is to coerce dask arrays read from
# disk with lazy loaders to definitely be numpy arrays
if DASK_INSTALLED:
if isinstance(x, da.Array):
x = np.asarray(x.compute())
if ndim > 1 and isinstance(y, da.Array):
y = np.asarray(y.compute())
if isinstance(w, da.Array):
w = np.asarray(w.compute())
if len(x) == 0:
return np.zeros(bins)
if ndim > 1 and len(y) == 0:
return np.zeros(bins)
if log is not None and log[0]:
if xmin < 0 or xmax < 0:
return np.zeros(bins)
xmin = np.log10(xmin)
xmax = np.log10(xmax)
x = np.log10(x)
if ndim > 1 and log is not None and log[1]:
if ymin < 0 or ymax < 0:
return np.zeros(bins)
ymin = np.log10(ymin)
ymax = np.log10(ymax)
y = np.log10(y)
# By default fast-histogram drops values that are exactly xmax, so we
# increase xmax very slightly to make sure that this doesn't happen, to
# be consistent with np.histogram.
if ndim >= 1:
xmax += 10 * np.spacing(xmax)
if ndim >= 2:
ymax += 10 * np.spacing(ymax)
if ndim == 1:
range = (xmin, xmax)
return histogram1d(x, range=range, bins=bins[0], weights=w)
elif ndim > 1:
range = [(xmin, xmax), (ymin, ymax)]
return histogram2d(x, y, range=range, bins=bins, weights=w)
[docs] def compute_fixed_resolution_buffer(self, *args, **kwargs):
from .fixed_resolution_buffer import compute_fixed_resolution_buffer
return compute_fixed_resolution_buffer(self, *args, **kwargs)
# DEPRECATED
[docs] @property
def primary_components(self):
"""
The ComponentIDs not associated with a :class:`~glue.core.component.DerivedComponent`
This property is deprecated.
"""
warnings.warn('Data.primary_components is deprecated', UserWarning)
return [c for c in self.component_ids() if
not isinstance(self._components[c], DerivedComponent)]
[docs] @property
def visible_components(self):
"""All :class:`ComponentIDs <glue.core.component_id.ComponentID>` in the Data that aren't coordinates.
This property is deprecated.
"""
warnings.warn('Data.visible_components is deprecated', UserWarning)
return [cid for cid, comp in self._components.items()
if not isinstance(comp, CoordinateComponent) and cid.parent is self]
@contract(i=int, ndim=int)
def pixel_label(i, ndim):
label = "{0}".format(i)
if 1 <= ndim <= 3:
label += " [{0}]".format('xyz'[ndim - 1 - i])
return label